Non-Geometric T-duality from Higher Groupoid Bundles with Connections

Christian Saemann Maxwell Institute and School of Mathematical and Computer Sciences Heriot–Watt University, Edinburgh

Bayrischzell Meeting, 14.5.2022

Based on joint work with Hyungrok Kim: arXiv:2204.01783

Topological T-duality

- $\bullet\,$ String theories on backgrounds with U(1)-isometries:
 - \Rightarrow a T-dual partner
- Low-energy limit: corresponding supergravity contains *B*-field:
 ⇒ connective structure on a gerbe

Geometric string background:

- A Riemannian manifold X
- A principal/affine torus bundle $\pi: P \to X$
- $\bullet\,$ An abelian gerbe ${\mathscr G}$ on the total space of P

Topological T-duality

Geometric string background:

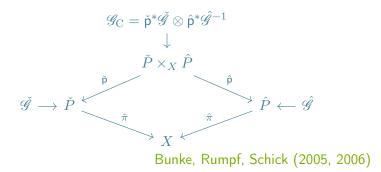
- A Riemannian manifold X
- A principal/affine torus bundle $\pi: P \to X$
- An abelian gerbe \mathscr{G} on the total space of P

Topological T-duality follows from exactness of the Gysin sequence: $\dots \to \mathrm{H}^{3}(X,\mathbb{Z}) \xrightarrow{\pi^{*}} \mathrm{H}^{3}(P,\mathbb{Z}) \xrightarrow{\pi_{*}} \mathrm{H}^{2}(X,\mathbb{Z}) \xrightarrow{F \cup} \mathrm{H}^{4}(X,\mathbb{Z}) \to \dots$

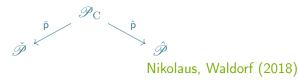
- Gerbe over P: 3-form $H \in \mathrm{H}^3(P,\mathbb{Z})$
- Fiber integration $\pi_*H = \hat{F} \in \mathrm{H}^2(X,\mathbb{Z})$ with $F \cup \hat{F} = 0$
- \Rightarrow There is $\hat{H} \in \mathrm{H}^3(P,\mathbb{Z})$ with $\pi_*\hat{H} = F$.
- Topological T-duality: $(F, H) \leftrightarrow (\hat{F}, \hat{H})$. Note: possibility for topology change!

Bouwknegt, Evslin, Hannabuss, Mathai (2004)

Topological T-duality, geometrically T-correspondence:



Principal 2-bundles (without connections):



Two open problems

- I. T-duality can lead to non-geometric backgrounds:
 - F^3 : *H* has no legs along fiber

T-duality: identity

 F^2 : H has 1 leg along fiber

 $\mathsf{T}\text{-duality} \to \mathsf{geometric\ string\ background}$

 F^1 : *H* has 2 legs along fiber

T-duality \rightarrow Q-space, (e.g. T-folds) locally geometric

 F^0 : H has all legs along fiber

T-duality \rightarrow *R*-space, non-geometric

Nikolaus/Waldorf cover $F^2 \leftrightarrow F^2$ and $F^2 \leftrightarrow F^1$ T-dualities What about the general case?

II. Differential refinement of this picture

Why is this interesting/hard?

- I. need to use suitable groupoids and augmented groupoids
- II. connections on principal 2-bundles require adjustment

Outline

- Connections on principal 2-bundles
- T-duality with differentially refined principal 2-bundles
- Explicit example: Nilmanifolds
- The T-duality group from Kaluza-Klein reduction
- Groupoid bundles for T-folds
- Augmented groupoid bundles for R-spaces

Principal 2-bundles or Non-Abelian Gerbes

with Connections

Christian Saemann Perturbative QFT, CK-duality, and Homotopy Algebras

Categorification

A mathematical structure ("Bourbaki-style") consists of

• Sets • Structure Functions • Structure Equations "Categorification":

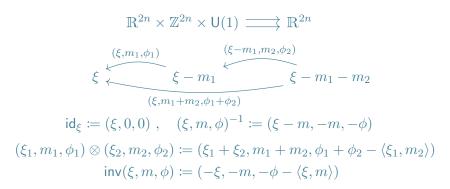
 $\label{eq:Sets} \begin{array}{l} \mathsf{Sets} \to \mathsf{Categories} \\ \mathsf{Structure} \ \mathsf{Functions} \to \mathsf{Structure} \ \mathsf{Functors} \\ \mathsf{Structure} \ \mathsf{Equations} \to \mathsf{Structure} \ \mathsf{Isomorphisms} \end{array}$

Example: Group \rightarrow 2-Group

- Set $G \rightarrow Category \mathscr{G}$
- $\bullet\,$ product, identity (1 : $* \to \mathsf{G}),$ inverse \to Functors
- $a(bc) = (ab)c \rightarrow Associator a : a \otimes (b \otimes c) \Rightarrow (a \otimes b) \otimes c$
- $\mathbb{1}a = a\mathbb{1} = a \to \mathsf{Unitors} \ \mathsf{I}_a : a \otimes \mathbb{1} \Rightarrow a, \ \mathsf{r}_a : \mathbb{1} \otimes a \Rightarrow a$
- $aa^{-1} = a^{-1}a = 1 \rightarrow \text{weak inv. inv}(x) \otimes x \Rightarrow 1 \leftarrow x \otimes \text{inv}(x)$

Note: Process not unique, variants: weak/strict/...

Example: The Lie 2-group $\underline{\mathsf{TD}}_n$



This Lie 2-group corresponds to a crossed module of Lie groups:

$$\begin{aligned} \mathsf{TD}_n &:= \left(\mathbb{Z}^{2n} \times \mathsf{U}(1) \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{R}^{2n} \right) \\ \mathsf{t}(m, \phi) &:= m \\ \xi \triangleright (m, \phi) &:= (m, \phi - \langle \xi, m \rangle) \end{aligned}$$

9/29

Principal 2-Bundles

Categorify bundles over a manifold M subordinate to cover (U_a) Breen, Messing (2005), Aschieri, Cantini, Jurčo (2005) Principal (H \xrightarrow{t} G)-bundle Object Principal G-bundle Cochains (q_{ab}) valued in G (q_{ab}) valued in G, (h_{abc}) valued in H Cocycle $g_{ab}g_{bc} = g_{ac}$ $t(h_{abc})g_{ab}g_{bc} = g_{ac}$ $h_{acd}h_{abc} = h_{abd}(q_{ab} \triangleright h_{bcd})$ Coboundary $g_a g'_{ab} = g_{ab} g_b$ $g_a g'_{ab} = t(h_{ab})g_{ab}g_b$ $h_{ac}h_{abc} = (g_a \triangleright h'_{abc})h_{ab}(g_{ab} \triangleright h_{bc})$ $A_a \in \Omega^1(U_a) \otimes \mathfrak{g}, B_a \in \Omega^2(U_a) \otimes \mathfrak{h}$ gauge pot. $A_a \in \Omega^1(U_a) \otimes \mathfrak{g}$ $\mathcal{F}_a = \mathrm{d}A_a + \frac{1}{2}[A_a, A_a] - \mathsf{t}(B_a) \stackrel{!}{=} 0$ Curvature $F_a = dA_a + A_a \wedge A_a H_a = \mathrm{d}B_a + A_a \triangleright B_a$ Gauge trafos $\tilde{A}_a := q_a^{-1} A_a q_a + q_a^{-1} dq_a$ $\tilde{A}_a := q_a^{-1} A_a q_a + q_a^{-1} \mathrm{d} q_a + \mathrm{t}(\Lambda_a)$ $\tilde{B}_a := q_a^{-1} \triangleright B_a + \tilde{A}_a \triangleright \Lambda_a + d\Lambda_a - \Lambda_a \wedge \Lambda_a$

Remarks:

- A principal $(1 \xrightarrow{t} G)$ -bundle is a principal G-bundle.
- A principal $(U(1) \xrightarrow{t} 1) = BU(1)$ -bundle is an abelian gerbe.

Why should the fake curvature(s) vanish?

$$\mathcal{F} := \mathrm{d}A + \frac{1}{2}[A, A] + \mathsf{t}(B) \stackrel{!}{=} 0$$

Without this condition:

- Gauge transformations do not close
- Cocycles do not glue together
- Higher parallel transport is not reparametrization invariant
- 6d Self-duality equation $H = \star H$ is not gauge-covariant:

 $H \to \tilde{H} = g \vartriangleright H - \mathcal{F} \rhd \Lambda$

With this condition:

- Principal $(1 \xrightarrow{t} G)$ -bundle is flat principal G-bundle.
- Higher connections are locally abelian!

Gastel (2019), CS, Schmidt (2020)

11/29

Solution: Adjustment

Many (not all!) higher gauge groups come with

Adjustment of higher group \mathcal{G} :

CS, Schmidt (2020), Rist, CS, Wolf (2022)

- Additional map $\kappa: \mathcal{G} \times \text{Lie}(\mathcal{G}) \rightarrow \text{Lie}(\mathcal{G})$
- Necessary for consistent definition of invariant polynomials.
- From Alternator (\Rightarrow EL_{∞} -algebras, Borsten, Kim, CS (2021))

For connections on principal *G*-bundles:

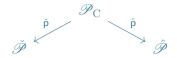
- Adjustment of curvature/cocycle/coboundary relations
- Can drop fake flatness condition

Example: Heterotic supergravity

- Lie 2-algebra $\mathfrak{g} imes \mathbb{R}
 ightrightarrow \mathfrak{g}$ or L_∞ -algebra $\mathbb{R}
 ightarrow \mathfrak{g}$
- $H = dB \frac{1}{3!}(A, [A, A]) (A, F) = dB + cs(A)$
- such that F arbitrary and dH = (F, F) follows

Geometric T-duality

Geometric T-duality: General Picture



- Nikolaus/Waldorf: Topological part:
 - $\check{\mathscr{P}}$ and $\hat{\mathscr{P}}$ are principal $\mathsf{TB}_n^{\mathsf{F2}}$ -bundles
 - \mathscr{P}_C is a principal TD_n -bundle
 - $\hat{\mathbf{p}}$ is a projection induced by strict morphism $\hat{\phi} : \mathsf{TD}_n \to \mathsf{TB}_n^{\mathsf{F2}}$
 - \check{p} induced by $\check{\phi} = \hat{\phi} \circ \phi_{\mathsf{flip}}$, flip morphism $\phi_{\mathsf{flip}} : \mathsf{TD}_n \to \mathsf{TD}_n$
- Differential refinement: (i.e. *B*-field+metric)
 - TB_n^{F2} does not come with adjustment, but
 - TD_n comes with very natural adjustment map
 - Have topological and full connection data on \mathscr{P}_C
 - $\circ\,$ Can reconstruct gerbe and bundle data on $\check{\mathscr{P}}$ and $\hat{\mathscr{P}}$
- (Also: generalization to affine tori.)

Example: Nilmanifolds

Geometry of string background $\check{\mathscr{G}}_{\ell} \to N_k$:

- Principal circle bundle over T^2 with $c_1 = k$
- Subordinate to $\mathbb{R}^2 \to T^2$ and with $\mathsf{U}(1) \cong \mathbb{R}/\mathbb{Z}$

 $(x,y,z)\sim (x,y+1,z)\sim (x,y,z+1)\sim (x+1,y,z-ky)$

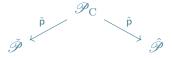
- Local connection form: $A(x,y) = kx \, dy \in \Omega^1(\mathbb{R}^2)$
- Kaluza-Klein metric: $g(x, y, z) = dx^2 + dy^2 + (dz + kx dy)^2$

T-duality:

$$(\check{\mathscr{G}}_{\ell} \to N_k) \iff (\hat{\mathscr{G}}_k \to N_{\ell})$$

Have: full interpretation in terms of higher bundle Kim, CS (2022)

Example: Nilmanifolds with principal 2-bundles



Lie 2-group:

$$\mathsf{TD}_1 \ \coloneqq \ \left(\mathbb{Z}^2 \times \mathsf{U}(1) \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{R}^2\right)$$

Topological cocycle data:

$$\begin{split} g &= \begin{pmatrix} \hat{g}, \ \hat{\xi} \\ \check{g}, \ \check{\xi} \end{pmatrix} , \begin{array}{l} \hat{g}(x, y; x', y') = \mathbb{1} , & \hat{\xi}(x, y; x', y') = \ell(x' - x)y , \\ \check{g}(x, y; x', y') = \mathbb{1} , & \check{\xi}(x, y; x', y') = k(x' - x)y , \\ m &= \begin{pmatrix} \hat{m} \\ \check{m} \end{pmatrix} , \begin{array}{l} \hat{m}(x, y; x', y'; x'', y'') = -\ell(x'' - x')(y' - y) , \\ \check{m}(x, y; x', y'; x'', y'') = -k(x'' - x')(y' - y) , \\ \phi &= \frac{1}{2}k\ell \left(y'(xx'' - xx' - x'x'') - (x'' - x')(y'^2 - y^2)x \right) \end{split}$$

Cocycle data of differential refinement:

$$\begin{split} A &= \begin{pmatrix} \check{A} \\ \hat{A} \end{pmatrix} = \begin{pmatrix} kx \, \mathrm{d}y \\ \ell x \, \mathrm{d}y \end{pmatrix} , \quad B = 0 , \quad \Lambda = \frac{1}{2} k \ell (xx' \, \mathrm{d}y + (xy + x'y' + y^2(x' - x)) \, \mathrm{d}x) \\ \text{Can reconstruct both string backgrounds fully.} \end{split}$$

The T-duality group from Kaluza-Klein Reduction

The group TD_n from Kaluza–Klein reduction

Observation:

T-duality is intimately linked to Kaluza-Klein reduction:

- Gysin sequence contains fiber integration
- Metric on total space given by Kaluza–Klein metric
- Literature: e.g. Berman (2019), Alfonsi (2019), ...
- $\bullet\,$ Geometric objects from maps into classifying spaces $\mathcal{C}.$
- Note: currying $C^0(X \times T^n, \mathcal{C}) \cong C^0(X, C^0(T^n, \mathcal{C}))$
- Non-trivial fibrations: cyclic torus space: $C^0(T^n, \mathcal{C}) / / \mathrm{U}(1)^n$

Example TD_1 from KK-reduction of gerbe on circle bundle

- Gerbe: $C^0(P, \mathcal{C})$ with $\mathcal{C} = \mathsf{BBU}(1)$
- Cyclic loop space: $LBBU(1)//U(1) \cong B(BU(1) \times U(1) \times U(1))$
- Replace U(1) with $\mathbb{Z} \to \mathbb{R}$: $\mathsf{TD}_1 := (U(1) \times \mathbb{Z}^2 \xrightarrow{\mathsf{t}} \mathbb{R}^2)$
- Iterate: TD_n

Automorphisms of TD_n

Abstract nonsense:

- Natural definition of morphism of 2-groups
- Automorphisms of 2-group form naturally a 2-group
- 2-group action $\mathscr{G} \curvearrowright \mathscr{H}$: morphism $\mathscr{G} \to \operatorname{Aut}(\mathscr{H})$

Automorphisms of the 2-group TD_n :

- Restrict to "reasonable" automorphisms
- These are parameterized by $\mathsf{GO}(n,n;\mathbb{Z}) imes \mathsf{Sym}(2n;\mathbb{Z})$
- Recover T-duality group for affine torus bundles
- Neither this group nor $\mathsf{GO}(n,n;\mathbb{Z})$ fully acts on TD_n
- What works: weak (unital) Lie 2-group

 $\mathscr{GO}(n,n;\mathbb{Z}) \coloneqq \left(\begin{array}{c} \mathsf{GO}(n,n;\mathbb{Z}) \times \mathbb{Z}^{2n} \Longrightarrow \mathsf{GO}(n,n;\mathbb{Z}) \end{array} \right)$

- Explicit: geometric subgroup, B- and β -trafos, T-dualities
- \Rightarrow arrange everything based on $\mathscr{GO}(n,n;\mathbb{Z})$

Groupoid bundles for T-folds

T-folds from groupoid bundles

Recall our construction of TD_1 :

- Gerbe: $C^0(P, C)$ with $C = \mathsf{BBU}(1)$
- Cyclic loop space: $LBBU(1)//U(1) \cong B(BU(1) \times U(1) \times U(1))$
- Replace U(1) with $\mathbb{R} \times \mathbb{Z} \rightrightarrows \mathbb{R}$: $\mathsf{TD}_1 := (\mathbb{Z}^2 \times \mathsf{U}(1) \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{R}^2)$

• Iterate: TD_n

Last point was sloppy, one obtains no 2-group, but 2-groupoid!

For T-folds: at least two T-duality directions \Rightarrow 2-groupoid!

Question: What is the appropriate groupoid here?

The 2-groupoid \mathscr{TD}_n

• Narain moduli space for affine circle bundles:

 $GM_n = \mathsf{GO}(n, n; \mathbb{Z}) \setminus \mathsf{O}(n, n; \mathbb{R}) / (\mathsf{O}(n; \mathbb{R}) \times \mathsf{O}(n; \mathbb{R}))$ =: $\mathsf{GO}(n, n; \mathbb{Z}) \setminus Q_n$.

• Resolve into action groupoid:

 $\mathsf{GO}(n,n;\mathbb{Z})\ltimes Q_n \ \Rightarrow \ Q_n \ .$

- Extend to $\mathscr{GO}(n,n;\mathbb{Z})$ -action $(\mathscr{GO}(n,n;\mathbb{Z}) \cong \operatorname{Aut}(\mathsf{TD}_n))$
- Place TD_n -fiber over every point in Q_n
- Include action of $\mathscr{GO}(n,n;\mathbb{Z})$ on TD_n
- The result is the 2-groupoid \mathscr{TD}_n

T-duality as \mathscr{TD}_n -bundles

Recall: functorial description of (higher) principal bundles:

- Manifold X
- Cover/surjective submersion $\sigma: Y \to X$
- Cech groupoid $\check{\mathscr{C}}(Y \to X) \coloneqq (Y \times_X Y \rightrightarrows Y)$
- Top. principal G-bundle: functor $\check{\mathscr{C}}(Y \to M) \to \mathsf{BG}$

For \mathscr{TD}_n -bundle:

- Replace (higher) group BG by Lie 2-groupoid \mathscr{TD}_n
- For ordinary groupoids: e.g. gauged sigma models

A non-geometric T-duality is simply a \mathscr{TD}_n -bundle.

T-duality as \mathscr{TD}_n -bundles

Remarks:

- The T-duality group $\mathscr{GO}(n,n;\mathbb{Z}) \supset \mathsf{GO}(n,n;\mathbb{Z})$ is gauged!
- Explicitly visible: $GO(n, n; \mathbb{Z})$ -gluing of local data
- Matches topological discussion in Nikolaus, Waldorf (2018)
- Differential refinement imposes restriction on top. cocycles
- This describes all T-dualities between pairs of T-folds
- Concrete conditions for "half-geometric" T-dualities
- Concrete cocycles of the T-fold in the nilmanifold example

To describe *Q*-spaces/T-folds: (can) use higher instead of noncommutative geometry.

Augmented groupoid bundles for R-spaces

What about R-spaces?

- \bullet T-folds/Q-spaces relatively harmless, as locally geometric
- *R*-spaces are not even locally geometric
- But perhaps higher description still works?

Note:

- One T-duality direction: *B*-field \rightarrow 2-, 1-forms \Rightarrow Lie 2-group TD_n-bundles with connection
- Two T-duality directions: *B*-field \rightarrow 2-, 1-, 0-forms \Rightarrow Lie 2-groupoid \mathscr{TD}_n -bundles with connection
- Three T-duality directions: *B*-field \rightarrow 2-, 1-, 0-, (-1)-forms \Rightarrow Augmented Lie 2-groupoid \mathscr{TD}_n^{aug} -bundles with connection

T-duality as \mathscr{TD}_n^{aug} -bundles

Construction of \mathscr{TD}_n^{aug} :

- Augmentation by suitable space of R-fluxes
- Determined by finite version of tensor hierarchy
- Finite embedding tensor $\mathbb{R}^{2n} \to \mathsf{GO}(n,n;\mathbb{Z}) \subset \mathscr{GO}(n,n;\mathbb{Z})$
- plus some standard consistency conditions
- Beyond this, augmentation fairly trivial

Remarks on T-duality with \mathscr{TD}_n^{aug} -bundles:

- Explicit examples, e.g. from nilmanifolds
- Yields consistency conditions between Q- and R-fluxes
- All previously discussed cases included
- All previously discussed also for affine U(1)-bundles

To describe *R*-spaces:

(can) use higher instead of nonassociative geometry.

Summary

What has been done:

- Top. T-duality can be described using principal 2-bundles
- Differential refinement requires adjusted curvatures
- Explicit description of geometric T-duality with nilmanifolds
- T-duality group is really a 2-group derived from KK-reduction
- Can extend to *Q*-spaces or T-folds
- Can extend to *R*-spaces

Future work:

- Link some mathematical results to physical expectations
- Link to pre-NQ-manifold pictures and similar
- Non-abelian T-duality?
- U-duality

Thank You!